Diffusion Furnace Heating Elements for Semiconductor Processing

Diffusion Furnace Heating Elements for Semiconductor Processing

One of the most critical steps in semiconductor manufacturing is the introduction of deliberate impurities into the material’s molecular structure, which is known as doping. The unique electrical properties of semiconductors are utterly dependent on the number of free electrons and electron holes available in its atomic bands. Under stable thermal conditions, the concentrations of these are roughly equivalent. Dopants are introduced to increase the conductivity of semiconductors closer to that of a conventional conductor. For example, introducing an impurity such as boron (Bn), gallium (Ga), or phosphorous (P) into a silicon (Si) semiconducting wafer increases the number of free…
Read More
How Does a Melting Furnace Work?

How Does a Melting Furnace Work?

Melting furnaces are used to overheat solid materials until they liquefy. Often, thermal processing equipment is used to alter the surface or internal characteristics of materials by carefully elevating their temperature. In the case of metals, this typically increases ductility at the expense of both hardness and strength. This requires an industrial furnace capable of generating and maintaining temperatures below that of the material’s melting point. A melting furnace, by comparison, generates overhot temperatures that exceed the metal’s melting point and cause decomposition of its physical structure which leads to liquefaction. This phase transition is utterly dependent on both temperature…
Read More